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Abstract - Entity Linking (EL) is a task of aligning literal of a 

named-entity from an unstructured document to appropriate 

entities in a knowledge base. The main objective of EL in 

biomedical domain stems on construction of efficient 

computational models. This paper proposes a bootstrap approach 

based on uniformity perception and similarity computation to link 

entities from unstructured biomedical texts to ontologies. A rich 

semantic information and structures in ontologies are influenced 

by the proposed approach for similarity computation and entity 

ranking. The proposed approach address the Entity Linking in 

biomedical domain. The experiments show that our approach 

outperforms the existing state-of-the-art algorithms in terms of 

linkage accuracy.  

Keywords - Entity Linking, Bootstrapping, Biomedical Literature. 

I.   BACKGROUND 

Over the past years, there is an emergence of enormous 
amount of unexplained abbreviations and terminologies that 
leverages a major bottleneck in understanding scientific 
literature. Mining and linking significant facts/information from 
biomedical literature have great impact on knowledge discovery 
in biomedical domain. It is also very challenging even for 
domain experts to keep up with the large number of articles 
published [2]. For instance, supporting the modeling task by 
means of identifying the key proteins, and their behaviors and 
interactions. Hence, there is a need for advancements in 
methodologies for making sense of large amount of unstructured 
textual data which is explosively increasing. In order to facilitate 
it, specific way of analysis can be enabled, where phrases 
comprising of a distinct term or sequence of terms are 
automatically linked to entries in a knowledge base. 

Here, the focus is on the task of Entity Linking (EL) from 
biomedical literature. Entity linking is a process that links 
different entities that refer to the same source of data.  Such 
entities exists in many other fields such as semantic web, 
multimedia, personal profiling, publication, geography, etc. Our 
main aim is to automatically identify the prominent entity 
mentions from unstructured texts and linking them to terms 
described in a Knowledge Base (KB) and define in an ontology 
in order to enrich the text documents. These knowledge base and 
ontology terms are also referred to as reference entities. EL can 
helps human end user navigate biomedical literature and 
improve many other Natural Language Processing (NLP) tasks 
such as gene-disease association, gene-gene and protein-protein 

interaction event extraction [3, 4]. Entities enable semantic 
exploration of biomedical mentions, numerous information 
prerequisites can be encountered by recurring a list of entities, 
their properties, and/or their relations. Those entities can be 
utilized to identify unforeseen relations or functions and link the 
gap between unstructured and structured data. 

Some recent works have been done on improving linkage 
performance using Machine Learning techniques [5,6]. 
However, it is laborious and effortful in building large-scale 
high-quality training set.  Hence we propose a bootstrapping 
approach for entity linkage by utilizing semantics-based and 
similarity-based methods. For a given entity, our approach 
initially infers a set of semantically co-referent entities and then, 
iteratively expands this entity set using distinct classes. In order 
to improve the performance of the classifier bootstrapping [7] 
technique is used which is suitable for entity linkage due to the 
abundant uncertain entities. A publicly accessible ontologies in 
biomedical domain known as BioPortal [8] is utilized here. 
These ontologies consist of rich structures with declaratively 
defined semantic relations, along with comprehensive text 
descriptions provided by domain experts. We assume that 
multiple entities are semantically related in unstructured texts 
(i.e., they co-occur in the same sentence, are linked through 
dependency paths, or play certain semantic roles in the same 
event, etc.). Thereby address entity linking by means of 
uniformity perception by leveraging the global topical 
coherence and linking a set of relevant mentions simultaneously 
and generated labeled EL data through bootstrap approach.   

Generally, there are two categories of EL algorithms namely 
collective inference and non-collective methods respectively 
[1]. Collective inference approaches influences concept 
mentions through supervised or graph based re-ranking 
methods. Besides they discourse the linking problem through 
exploiting the agreement between the mention document’s text 
and the context of the entities of the knowledge base. Graph 
based re-ranking models typically collects linking agreement 
information from training data and propagates to other nodes. 
Non-collective methods usually rely on prior knowledge and 
context similarity with supervised models. Ranking scores for 
each concept mentions are computed individually. Whereas, 
both these approaches requires large amount of manually 
labelled entity mentions in order to achieve a reasonable linking 
accuracy.  
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This paper presents a study on identifying prominent links 

between entities and label gene/protein-disease relations in 

PubMed and MEDLINE abstracts by using bootstrapping 

approach. Beginning with PubMed and MEDLINE abstracts, 

we first recognized gene/protein and disease entities using 

existing Natural Language Processing (NLP) tools such as 

Regex NER. Then we extract candidate gene/protein-disease 

pairs by mapping it with the existing ontology and knowledge 

base based on different levels of co-occurrence such as, abstract 

level, sentence level, phrase level and paragraph level. In order 

to find the most linked gene/protein-disease relations, we 

finally rank candidate gene/protein-disease pairs using 

Information Gain (IG). The evaluation using a manually 

annotated data set from Gene Ontology (GO) indicated that the 

Bootstrap method outperformed others. To our best knowledge, 

this is the first attempt that applied bootstrap approach to rank 

gene/protein-disease entity linking from biomedical literature. 

II. METHODOLOGY 

A. PROPOSED FRAMEWORK  

A bootstrapping approach is proposed, in which it accepts 

the candidate entity as an input. The following section describes 

the methodological steps for our approach depicted in Fig. 1.  

The major goal of the paper is to link the identified entities to 

the concepts in the knowledge base. For a given biomedical text 

document as input, we extract the entity mentions and 

automatically construct a kernel, consisting of semantically co-

referent entities, via uniformity perception on several 

gene/protein/disease vocabularies from ontologies. Then the 

kernel is expanded iteratively using distinct classes to probe 

different co-referent entities. The distinguishability of each 

class is learned with a statistical measure, reveling the 

importance of the class characterizing the co-referent entities 

and match the class by comparing the functions of those 

entities. Furthermore, frequent class combinations (i.e., the 

functions often used together) are mined to enhance entity 

labeling criterion in bootstrapping, so that the linkage accuracy 

can be improved. Entity mapping for an entity mention is 

assigned by measuring the popularity of an entity among all 

other candidate entities.  

 

i. Input Documents 

        The development corpus is a subset of PubMed and 

Medline abstracts dealing with Huntington Disease and its 

genes. It was annotated with disease and gene relations, based 

on “etiology” and “clinical biomarker”. Beginning with 

PubMed and MEDLINE abstract collection. The initial step is 

the pre-processing which is done to determine entity boundaries 

in a text by sentence splitting and tokenization. Natural 

language processing incurs creation of a set of patterns to match 

the possible linguistic realizations of the individual facts. Due 

to this complexity, the preprocessing on structural input 

requires assigning parts-of-speech and features to words and 

idiomatic phrases. Annotated corpus drive construction of 

training data for machine learning that will filter out false 

positives from the dictionary-based results. These data are used 

for training and testing purposes. The input corpus consists of 

text related to Huntington Disease, gene names with their 

functions and all words related to neurogenetic disorders. The 

input corpus which is manually curated has 8998 sentences and 

140481 words. Let, entity mentions 𝑢 ∈ E are prominent 

phrases in the input biomedical text document. All classes, 

properties and individuals described in the ontologies 𝑟 ∈ 𝑅 are 

considered to be the reference entities. Relations based on 

sentence level and paragraph level are extracted based on co-

occurrence are extracted. A list of candidate entities 𝑋 are 

located from the biomedical dictionaries for each entity in the 

Context Graph 𝐶𝐺. Then we compute the imporatance score 

and link them by the bootstrap approach. Finally, we compute 

similarity scores for each entity/candidate pairs < 𝑢, 𝑥 > and 

select the candidate with the highest score as the appropriate 

entity for linking.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ii. Entity Extraction 

        We apply the publicly available natural language 

processing tools for identifying prominent biomedical entities 

from unstructured texts to recognize the entity and ascribe it to 

a class or entity type. The occurrences of gene/disease entities 

in a text automatically identified by Gene/disease NER. 

Initially, a name tagger [9] is used to extract entity mentions. 

Regular expressions are used to join named entities that might 

have been considered separate by looking for intervening 
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Figure 1 Work flow of the Bootstrap Entity Linkage 
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prepositions, articles, and punctuation marks. After that, a 

shallow parser [10] is used to add noun phrase chunks to the list 

of entities. A parameter controls the minimum and maximum 

number of chunks per entity, in which by default one and four 

are considered and whether overlapping entities are allowed. 

The entity normalization process is characterized by 

representing entities’ names to their canonical names and by 

associating them with unique representations so as to help in 

solving issues resulting from variations in the synonym terms 

as well as the ambiguous abbreviations. 

 

iii. Knowledge Base  

         A comprehensive Knowledge Base (KB) is developed 

based on the classes, characters and functions/properties 

present in the aggregated ontologies. Graph-based approach is 

used to construct the KB.  We create a document for Triplet 

Construction in which each entity e is entity is described as as 

a set of triples t ∈ T. The knowledge base which is constructed 

from 300 biomedical ontologies from BioPortal [8], consist of 

the Triplets in which each entity is connected to other entities 

via a set of triples 𝑇. And these connections are regarded as 

edges of 𝐶𝐺𝐾𝐵. where, CGKB is the Context Graph with respect 

to the Knowledge Base.  

  

iv. Entity Mapping and Candidate Retrieval 

        We perform entity matching for all entity types based on 

regular expressions [11] using Regex NER. It defines cascaded 

patterns over token sequences. Set of rules are defined for each 

entity type that expresses some patterns of entity mentions by 

exploring the corpora, and BIO labels are assigned to those 

patterns. Also, triples describing the entities are analyzed based 

on the properties such as: labels and names (e.g. rdfs:label), 

synonyms (e.g. synonym from gene ontology), aliases, and 

symbols (e.g. from Orphanet ontology). Thus providing more 

than 160 properties to map with its respective entity.  Then we 

retrieve all the entities that are similar to the mentions in the 

ontologies and knowledge base and consider them as candidate 

entities.  

   

v. Kernel Construction 

         A set of semantically co-referent entities 𝑢, mentioned as 

kernel of 𝑢 is automatically inferred by using the functional 

aspects of gene and disease mined from biomedical 

dictionaries. We use Human Metabolome Database (HMDB) 

[12], Gene Ontology [13] and UniProt [14] as gene dictionary; 

Medical Subject Heading (MeSH) produced by US National 

Librart of Medicine, and KEGG Disease [15] as disease 

dictionary. The training set is initialized by combining the 

candidate entity with the co-referent entities based on 

functional property, partial match and full match of the 

elements. Beside we assume that the correct entities are infers 

in the kernel. Yet, error accumulation in the bootstrapping 

process can be encountered due noisy data.  

 

vi. Entity Labeling 

         Linking entities refers to the description of functions or 

target genes through which it is associated with the disease. 

Entity labeling is a task that deliberated for context graph in our 

experiments. Assume that the classification component in a 

given context graph is given a set of labels. The problem is 

simplified by initially constructing a network with only a single 

type of entity from the context graph. So that we introduce a 

link between two entities if they are connected to the same 

function and having introduced these entity-entity links delete 

all the functional nodes and the links originating from them 

from the context graph. 

  
vii. Learning Distinct Classes 

        This iterative step is based on the hypothesis that co-

referent entities share some similar functional aspects and a few 

functions are more essential for linking entities. For a given set 

of candidate entities with respect to 𝑢, we estimated a set of co-

referent and non-coreferent entities together establish the 

training set of 𝑢. A pair of matched functions (partial/full) are 

chosen to hold the maximum distinguishability and is measured 

in terms of Information Gain [16]. Then assigned a unique value 

to separate function in that class. Since, functional relations are 

involved in the iteration. Functional relations are extracted and 

compared with a string matching algorithm [17] for the entities 

given in the training set. Since, each entity is described in the 

dictionary that contains all phrases matching the string. If the 

similarity between the values are larger than a threshold, the 

related two functions are matched. The highest computational 

cost in the Boosting process is incurred due to functional aspect 

comparison. The learned functional classes reveal important 

characteristics of the mined biomedical literatures and enable to 

find new co-referent entities holding the same function. 

Additionally, we employ Apriori algorithm to find the frequent 

grouping of functions and refine them using heuristic rules 

beforehand. In each iteration, when a class is chosen and it 

belongs to some frequent class cluster, its counterpart in the 

group. Finally, the classes in the group with their associated 

value would be used together to obtain new links.  

  

viii.  Bootstrapping Algorithm 

         The proposed entity linkage algorithm is a kind of semi-

supervised learning and is depicted in Algorithm 1. Given the 

kernel K(e) of an entity e, and a set x of (uncertain) entities from 

the input document D, the goal is to incrementally learn the 

most distinct classes (steps 3-5) and use them to continue 

linking entities in 𝑿 by retraining itself on an explained training 

set (steps 7-8).  

 

Algorithm 1: Bootstrapping Biomedical Entity Linkage 

Input: The kernel 𝐊 of an entity e, a set 𝐗 of Candidate entities 

in a set 𝐃 of input documents.  

Output: A set 𝐄 of labelled coreferent entities for  e.  

 

1. Initialize two empty lists 𝐿𝑃 and 𝐿𝑉, and print 𝐊 to 𝐄; 

2. Estimate a set 𝐍 of non-coreferent entities for e 

Such that 𝐍 ⊆ 𝐗, |𝐍| ≈ |𝐄|; 
3. The most distinct classes are selected (fi, fj) ∉ LP by 

Distinct(fi, fj) = IG(fi, fj) = E(T) − E(T(fi,fj)), such 

that  
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fi ∈ ⋃ Pred(𝐃, s)s∈𝐄⋃𝐍 , fj ∈ ⋃ Pred(𝐃, t)t∈𝐄⋃𝐍,𝐭≠𝐬 ; 

4. If (fi, fj) = 𝑁𝑈𝐿𝐿 then break; 

5. Assign the maximum score values (vi, 𝑣j) to (fi, fj) 

respectively, based on occurrence given by 

(vi, vj) = argmax|{(s, s′) ∈ 𝐄 × 𝐄| sub(v, v′) ≥

δ, 〈s, fi, v〉 ∈ 𝐃, 〈s′, f𝐣, 𝐯′〉 ∈ 𝐃}|, such that 

vi ∈ ⋃ Obj(𝐃, s, fi)s∈𝐄 , vj ∈ ⋃ Obj(𝐃, t, fj)t∈𝐄 , while 

(fi, vi) ∉ 𝐿𝑉 or (fj, vj) ∉ 𝐿𝑉; 

6. If  𝑜𝑖 = 𝑁𝑈𝐿𝐿 and 𝑜𝑗 = 𝑁𝑈𝐿𝐿 then Push (fi, fj) in 𝐿𝑃; 

Go to step 3; 

7. If 𝑜𝑖 ≠ 𝑁𝑈𝐿𝐿 then 

Use (fi, 𝑣i) to fetch out a set 𝐔 of candidate entities, 

such that U ⟵ {u ∈ 𝐗|〈u, fi, vi〉 ∈ 𝐃}; 
Else if (fi, 𝑣i) is distinct by the following        equation, 

 Distinct(fi, vi) =
|{s∈𝐄|〈s,fi,vi〉∈𝐃}|

|{s∈𝐗|〈s,fi,vi〉∈𝐃}|
, then 

 Add 𝐔 to 𝐄, and eliminate 𝐔 from 𝐗; 

8. If 𝑜𝑗 ≠ 𝑁𝑈𝐿𝐿 then  

Use (fj, 𝑣i) to draw a set 𝐖 of candidate entities, such 

that W ⟵ {u ∈ 𝐗|〈w, fj, vj〉 ∈ 𝐃}; 

Else if (fi, 𝑣i) is distinct by the following equation,  

Distinct(fi, vi) =
|{s∈𝐄|〈s,fi,vi〉∈𝐃}|

|{s∈𝐗|〈s,fi,vi〉∈𝐃}|
, then 

 Add 𝐖 to 𝐄, and eliminate 𝐖 from 𝐗; 

9. Push (fi, 𝑣i) and (fi, 𝑣i) in 𝐿𝑉; 

10. Continue iteration until 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒𝑠 > 𝜏; finally, 

return 𝐄 with the set of labels. 

 

The distinctiveness of a class is measured w.r.t. the amount of 

potentially co-referent entities that can be found by using the 

class. Let (fj, 𝑣i) be the distinct function and value selected 

from a set 𝐃 of documents respectively. The distinctiveness of 

a class is computed as mentioned in step 7 and 8, where 𝐄, 𝐗 are 

the co-referent and uncertain entity sets in 𝐃, respectively. The 

algorithm terminates when all distinct functions have been 

checked (step 7) or the iteration time exceeds the threshold 

value 𝜏 (step 10). A subset of 𝐸 is randomly sampled by the 

algorithm to reduce the computational cost. The sample size is 

denoted by 𝑁 is set to set to 240 based on the computational 

capability of our system. The time complexity of the 

algorithm O(τ ∗ N)2, since in an iteration at most O(N) entities 

need to be compared, which is the most time-consuming step in 

the algorithm and the main issue of our approach. 

III. EXPERIMENTAL RESULTS 

A. Evaluation Measures 

      The assessment of our entity linking systems is performed 

in terms of evaluation measures, such as precision, recall, F1-

measure and accuracy. The precision of an entity linking system 

is computed as the portion of correctly linked entity mentions 

that are generated by the system:  

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
|{𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑙𝑖𝑛𝑘𝑒𝑑 𝑒𝑛𝑡𝑖𝑡𝑦 𝑚𝑒𝑛𝑡𝑖𝑜𝑛𝑠}|

|{𝑙𝑖𝑛𝑘𝑒𝑑 𝑚𝑒𝑛𝑡𝑖𝑜𝑛𝑠 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑏𝑦 𝑠𝑦𝑠𝑡𝑒𝑚}|
       (1) 

       

       Precision takes into account all entity mentions that are 

linked by the system and determines how correct entity 

mentions linked by the entity linking system are. Precision is 

usually used with the measure recall, the portion of correctly 

linked entity mentions that should be linked: 

 

𝑟𝑒𝑐𝑎𝑙𝑙 =
|{𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑙𝑖𝑛𝑘𝑒𝑑 𝑒𝑛𝑡𝑖𝑡𝑦 𝑚𝑒𝑛𝑡𝑖𝑜𝑛𝑠}|

|{𝑒𝑛𝑡𝑖𝑡𝑦 𝑚𝑒𝑛𝑡𝑖𝑜𝑛𝑠 𝑡ℎ𝑎𝑡 𝑠ℎ𝑜𝑢𝑙𝑑 𝑏𝑒 𝑙𝑖𝑛𝑘𝑒𝑑}|
           (2) 

 

       Recall takes into account all entity mentions that should be 

linked and determines how correct linked entity mentions are 

with regard to total entity mentions that should be linked. These 

two measures are used together in 𝐹1 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 to provide a 

single measurement for a system. 𝐹1 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 is defined as 

the harmonic mean of precision and recall: 

 

𝐹1 =
2.𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛.𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
                                         (3) 

 

       Accuracy is calculated as the number of correctly linked 

entity mentions divided by the total number of all entity 

mentions. Therefore, here  𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑟𝑒𝑐𝑎𝑙𝑙 = 𝐹1 =
𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦. 

B. Reults         

The experimental evaluation were performed on a personal 

desktop with an Intel Core i5 3.1GHz CPU, 4 GB memory, 

Ubundu 11.10 and Java 7. The datasets were stored on a server 

with two Xeon Quad 2.4 GHz CPUs, 64 GB memory, CentOS 

6.4 and MySQL 5.6. We conducted our experiment using the 

evaluation dataset created by Zheng et al. (2015) which 

contains 208 linkable mentions extracted from several 

biomedical publications. Among all of the ontologies, there are 

more than 2 million entities and more than 50 million factual 

statements. We observed that for each mention, the candidate 

entity types are not as diverse. The kernel achieved the highest 

precision but the lowest relative recall, because some coreferent 

entities cannot simply be identified via uniformity perception. 

During bootstrapping, our approach estimated non-coreferent 

entities to measure distinctiveness and employed frequent 

combination of functions/relations between entities to enhance 

the selection criterion of functions/relations. The candidate 

“Neural Nucleus” a non-coreferent entity indirectly links to 

“Nerve Impulse”, due to frequent combination of relations it 

links to “Neural Nucleus” from candidates of coreferent 

entities enables the candidate entity “Cell Nucleus” to obtain 

the correct label and rank to link. Both of their contribution 

increased the overall accuracy of the proposed system. It is 

observed that, 64% of the correct links were inferred from the 

kernel, and 36% correct links were established through 

bootstrapping, in which 4% were of frequent combinations of 

relations. 

The entity linking is to map an entity mentioned in an input 

text to the Knowledge Base, which consist of articles from 

PubMed and MEDLINE. The Bootstrap track gives a sample 

entity set which consists of 416 entities for developing. The test 

set consists of 3904 entities. 2229 of these entities cannot be 

mapped to Knowledge Base, for which the systems should 
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return NIL links. The remaining 1675 entities all can be aligned 

to Knowledge Base. We will firstly analyze the ranking 

methods with those non-NIL entities, and then with an 

additional validation module, we train and test with all entities 

including NIL link entities. We have shown our results for 

Biomedical Entity Linking system before and after 

bootstrapping of the biomedical entities in Table 2.        

 
Table 1 Performance of the Entity Linking Systems 

EL System  Correct Links Total Links Linkage 

Accuracy 

(Chan and Roth, 2013) 84 113 74.34% 

(Zheng et al, 2015) 173 208 83.17% 

Bootstrap approach 192 208 92.30% 

 
Table 2 Results for Bootstrapping Biomedical Entity Linking System 

 Precision (%) Recall (%) F-Score (%) 

Without Bootstrap 86.44 87.23 86.83 

With Bootstrap  92.83 83.12 92.19 

 

For example, given a sentence “The effects of the MEK 

inhibitor on total HER2, HER3 and on phosphorylated pHER3 

were dose dependent.” it can link “HER2” to “ERBB2” in 

BioPortal and extract the class  

'Proto-Oncogenes→Oncogenes→Genes→Genome 

Components→Genome→Phenomena and Processes' as the 

class and label the co-referent entities for this entity mention. 

Figure 2 depicts the average precision and relative recall on the 

50 testing entities with respect to the number of iterations, 

where the relative recall continuously rises up at the beginning 

and ascends slowly later. The result suggests that a small 

amount of distinct functions is accurate enough for entity 

linkage. If bootstrapping continues, some non-distinct functions 

would be chosen and cause decrease in precision. Based on the 

figure, we set the maximum number of iteration 𝜏 = 4.  

The empirical comparison has been made between the 

proposed Bootstrap approach and two other systems, which 

have several variations and it is hard to cover them all in our 

test. The Indexing + Similarity computation approach [18] 

leverages indexing techniques on a few important 

relations/functions to locate the candidate entities, and then 

combines various matchers to compute similarities between 

these candidates. In our evaluation, we indexed the labels and 

mention names of all the entities in our input corpus and used 

the TF_IDF model to compute the similarities between the 

descriptions of entities. The similarity threshold was set to 0.24 

based on the best accuracy in our test. Class based learning 

approach identifies distinct functions/relations statistically 

w.r.t. different classes, and matches other entities under the 

same classes using the learned function/relations. We chose 

[19] in the test, which conducted uniformity perception to 

create a training set and ranked entities w.r.t. the information 

gain in different classes. Value similarities from top-5 

function/relations were linearly aggregated with equal 

weighting, and the threshold was fixed to 0.14 according to the 

best accuracy.  

 

 
Figure 3 Precision and relative recall comparison 

Fig. 3 shows the precision and relative recall comparison 

between the proposed Bootstrap approach and the other two 

systems. It is observed that the Bootstrap approach achieved the 

best overall accuracy, while the class based learning largely 

depend on the sufficiency of the training sets, causing its 

accuracy varied between testing entities. The system based on 

Indexing + Similarity computation performed worse than the 

others, because it gen`erated too many candidate entities with 

diverse functions/relation-values, and failed to decide a uniform 

threshold to eliminate wrong links.  

V.  CONCLUSION   

We proposed a bootstrapping approach to entity linkage on 

biomedical domain. It automatically extract and link prominent 

entities from unstructured biomedical literatures to ontologies. 

The proposed Bootstrap approach is based on uniformity 

perception and similarity computation to link entities from 

unstructured biomedical texts to ontologies. Also bridges the 

gap between semantically coreferent entities and potential 

candidates. The experimental results show that our approach 

achieved superior precision and recall by comparing with the 

existing state-of-the art algorithms with improved linkage 

accuracy. In future, we look forward to designing other semi-

supervised learning approaches for entity linkage over 

biomedical domain.  
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